Understanding SMS Spam in a Large Cellular Network: Characteristics, Strategies and Defenses
نویسندگان
چکیده
In this paper, using a year (June 2011 to May 2012) of user reported SMS spam messages together with SMS network records collected from a large US based cellular carrier, we carry out a comprehensive study of SMS spamming. Our analysis shows various characteristics of SMS spamming activities, such as spamming rates, victim selection strategies and spatial clustering of spam numbers. Our analysis also reveals that spam numbers with similar content exhibit strong similarity in terms of their sending patterns, tenure, devices and geolocations. Using the insights we have learned from our analysis, we propose several novel spam defense solutions. For example, we devise a novel algorithm for detecting related spam numbers. The algorithm incorporates user spam reports and identifies additional (unreported) spam number candidates which exhibit similar sending patterns at the same network location of the reported spam number during the nearby time period. The algorithm yields a high accuracy of 99.4% on real network data. Moreover, 72% of these spam numbers are detected at least 10 hours before user reports.
منابع مشابه
Characterizing SMS spam in a large cellular network via mining victim spam reports
In this paper 1 a study of SMS messages in a large US based cellular carrier utilizing both customer reported SMS spam and network Call Detail Records (CDRs) is conducted to develop a comprehensive understanding of SMS spam in order to develop strategies and approaches to detect and control SMS spam activity. The analysis provides insights into content classification of spam campaigns as well a...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملGreystar: Fast and Accurate Detection of SMS Spam Numbers in Large Cellular Networks Using Gray Phone Space
In this paper, we present the design of Greystar, an innovative defense system for combating the growing SMS spam traffic in cellular networks. By exploiting the fact that most SMS spammers select targets randomly from the finite phone number space, Greystar monitors phone numbers from the grey phone space (which are associated with data only devices like laptop data cards and machine-to-machin...
متن کاملLohit: an Online Detection & Control System for Cellular Sms Spam
The efficient and accurate control of spams on mobile handsets is an important problem. Mobile spam incurs a cost on a per-message basis, degrades normal cellular service, and is a nuisance and breach of privacy. It is also a popular enabler of mobile fraud. In countries such as South Korea and Japan, Mobile Spamming generates almost half of the total SMS traffic. In this paper we propose a nov...
متن کاملUnderstanding Cross-Channel Abuse with SMS-Spam Support Infrastructure Attribution
Recent convergence of telephony with the Internet offers malicious actors the ability to craft cross-channel attacks that leverage both telephony and Internet resources. Bulk messaging services can be used to send unsolicited SMS messages to phone numbers. While the long-term properties of email spam tactics have been extensively studied, such behavior for SMS spam is not well understood. In th...
متن کامل